The Satake Isomorphism for Special Maximal Parahoric Hecke Algebras

نویسندگان

  • THOMAS J. HAINES
  • S. Rostami
چکیده

Let G denote a connected reductive group over a nonarchimedean local field F . Let K denote a special maximal parahoric subgroup of G(F ). We establish a Satake isomorphism for the Hecke algebra HK of K-bi-invariant compactly supported functions on G(F ). The key ingredient is a Cartan decomposition describing the double coset space K\G(F )/K. We also describe how our results relate to the treatment of Cartier [Car], where K is replaced by a special maximal compact open subgroup e K ⊂ G(F ) and where a Satake isomorphism is established for the Hecke algebra H e K .

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Satake Parameters for Representations with Parahoric Fixed Vectors

This article, a continuation of [HRo], constructs the Satake parameter for any irreducible smooth J-spherical representation of a p-adic group, where J is any parahoric subgroup. This parametrizes such representations when J is a special maximal parahoric subgroup. The main novelty is for groups which are not quasi-split, and the construction should play a role in formulating a geometric Satake...

متن کامل

A SATAKE ISOMORPHISM IN CHARACTERISTIC p

Suppose that G is a connected reductive group over a p-adic field F , that K is a hyperspecial maximal compact subgroup of G(F ), and that V is an irreducible representation of K over the algebraic closure of the residue field of F . We establish an analogue of the Satake isomorphism for the Hecke algebra of compactly supported, Kbiequivariant functions f : G(F ) EndV . These Hecke algebras wer...

متن کامل

Iwahori-hecke Algebras of Sl2 over 2-dimensional Local Fields

Hecke algebras were first studied because of their role in the representation theory of p-adic groups, or algebraic groups over 1-dimensional local fields. There are two important classes of Hecke algebras. One is spherical Hecke algebras attached to maximal compact open subgroups, and the other is Iwahori-Hecke algebras attached to Iwahori subgroups. A spherical Hecke algebra is isomorphic to ...

متن کامل

The Base Change Fundamental Lemma for Central Elements in Parahoric Hecke Algebras

Let G be an unramified group over a p-adic field F , and let E/F be a finite unramified extension field. Let θ denote a generator of Gal(E/F ). This paper concerns the matching, at all semi-simple elements, of orbital integrals on G(F ) with θ-twisted orbital integrals on G(E). More precisely, suppose φ belongs to the center of a parahoric Hecke algebra for G(E). This paper introduces a base ch...

متن کامل

IWAHORI-HECKE ALGEBRAS FOR p-ADIC LOOP GROUPS

This paper is a continuation of [3] in which the first two authors have introduced the spherical Hecke algebra and the Satake isomorphism for an untwisted affine Kac-Moody group over a non-archimedian local field. In this paper we develop the theory of the Iwahori-Hecke algebra associated to these same groups. The resulting algebra is shown to be closely related to Cherednik’s double affine Hec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009